天美传媒AV,欧美一级爱爱,欧美色com,暴操在线免费观看

您好,歡迎光臨濟南泉誼機械科技有限公司網(wǎng)站!

服務(wù)熱線

李經(jīng)理13695310799
熱門搜索:軍事模型 航天模型 飛機模型 坦克模型 變形金剛模型 鋼雕模型
您當(dāng)前所在位置 首頁>>新聞動態(tài)>>行業(yè)資訊大型艦船模型在其他方面的應(yīng)用

大型艦船模型在其他方面的應(yīng)用

發(fā)布時間:2025-01-22 來源:http://m.68722.cn/

  大型艦船模型在其他方面的應(yīng)用

  Application of Large Ship Models in Other Aspects

  虛擬現(xiàn)實技術(shù)優(yōu)化艙內(nèi)空間:劉丹和王雯艷在 2023 年使用虛擬現(xiàn)實技術(shù)建立大型艦船艙內(nèi)空間模型,優(yōu)化艦船三維圖像模型中的特征參數(shù),并將艦船內(nèi)部的虛擬空間進行劃分,通過圖像分割技術(shù)結(jié)合虛擬現(xiàn)實技術(shù)對大型艦船的艙內(nèi)空間分布進行優(yōu)化,從而大幅度提升大型艦船的空間利用率,為船員今后的海上作業(yè)提供便利。

  Virtual reality technology optimizes cabin space: Liu Dan and Wang Wenyan used virtual reality technology to establish a model of the cabin space of a large ship in 2023, optimize the feature parameters in the three-dimensional image model of the ship, and divide the virtual space inside the ship. By combining image segmentation technology with virtual reality technology, the distribution of cabin space of the large ship is optimized, thereby greatly improving the space utilization rate of the large ship and providing convenience for the crew's future maritime operations.

  軌跡預(yù)測:Xianyang Zhang、Gang Liu 和 Chen Hu 在 2019 年針對大型艦船軌跡預(yù)測問題,討論了基于隱馬爾可夫模型(HMM)的軌跡預(yù)測問題。為了減少誤差積累對預(yù)測精度的影響,在 HMM 框架中加入小波分析,提出了一種基于小波的 HMM 軌跡預(yù)測算法(HMM-WA)。通過小波變換和單重構(gòu),將軌跡序列轉(zhuǎn)換為列向量,然后將其作為 HMM 的輸入。仿真結(jié)果表明,HMM-WA 算法與經(jīng)典 HMM、線性回歸方法和卡爾曼濾波器相比,可以有效提高預(yù)測精度。

  Trajectory prediction: Xianyang Zhang, Gang Liu, and Chen Hu discussed the trajectory prediction problem based on Hidden Markov Model (HMM) for large ships in 2019. In order to reduce the impact of error accumulation on prediction accuracy, wavelet analysis is added to the HMM framework, and a wavelet based HMM trajectory prediction algorithm (HMM-WA) is proposed. By using wavelet transform and single reconstruction, the trajectory sequence is transformed into column vectors, which are then used as inputs for HMM. The simulation results show that the HMM-WA algorithm can effectively improve prediction accuracy compared to classical HMM, linear regression methods, and Kalman filters.20221025031214577.jpg

  垂直加速度預(yù)測:Yumin Su、Jianfeng Lin 和 Dagang Zhao 在 2020 年提出了一種基于循環(huán)神經(jīng)網(wǎng)絡(luò)的長短期記憶(LSTM)和門控循環(huán)單元(GRU)模型的實時船舶垂直加速度預(yù)測算法。通過對大型船舶模型在海上進行自推進試驗,獲得了船首、中部和船尾的垂直加速度時間歷史數(shù)據(jù),并通過 Python 對原始數(shù)據(jù)進行重采樣和歸一化預(yù)處理。預(yù)測結(jié)果表明,該算法可以準(zhǔn)確預(yù)測大型船舶模型的加速度時間歷史數(shù)據(jù),預(yù)測值與實際值之間的均方根誤差不大于 0.1。優(yōu)化后的多變量時間序列預(yù)測程序比單變量時間序列預(yù)測程序的計算時間減少了約 55%,并且 GRU 模型的運行時間優(yōu)于 LSTM 模型。

  Vertical acceleration prediction: Yumin Su, Jianfeng Lin, and Dagang Zhao proposed a real-time ship vertical acceleration prediction algorithm based on recurrent neural network long short-term memory (LSTM) and gated recurrent unit (GRU) models in 2020. By conducting self propulsion tests on a large ship model at sea, historical data of vertical acceleration at the bow, middle, and stern were obtained, and the raw data was resampled and normalized using Python for preprocessing. The prediction results indicate that the algorithm can accurately predict the acceleration time history data of large ship models, and the root mean square error between the predicted value and the actual value is not greater than 0.1. The optimized multivariate time series prediction program reduces the computation time by about 55% compared to the univariate time series prediction program, and the running time of the GRU model is better than that of the LSTM model.

  本文由  大型艦船模型 友情奉獻.更多有關(guān)的知識請點擊  http://m.68722.cn  真誠的態(tài)度.為您提供為的服務(wù).更多有關(guān)的知識我們將會陸續(xù)向大家奉獻.敬請期待.

  This article is a friendly contribution from a large ship model For more related knowledge, please click http://m.68722.cn Sincere attitude To provide you with services We will gradually contribute more relevant knowledge to everyone Coming soon.

- 911精品国产自产在线观看| 9999av视频| 九九国产精品视频| 蜜臀国产精品99| 亚洲国产日本| 久久无码国产专区精品| 91精品视频88AV在线观看| 欧美综合国产精品日韩一| 欧美艺人久久| 精品伦视频一区二区| 国模无码合集| 国精产品一区一区三区糖心视频| 亚洲AV无码动漫在线| 色伦图区| 久久久久久国产免费费播放| 99久久无码精品亚洲| 区一区二偷窥| 久久精品无码av天堂| 日本精品久久久中文字幕| 老司机av网站一区| 韩日视频在线播放| 日韩一区二区三区玖玖| 欢迎访问精品国产乱子伦一区二区三区 | 国产自慰影院| 国产片婬乱一级吃奶毛片视频| 91久久老司机福利精品网| www.六月| 91精品国产日韩91久久久| 亚洲欧美精品中文字幕| 国产 欧美 极品| 97一区二区亚洲| 久久夜久久久| 永久视频免费在线观看| 亚洲精品在线观看视频| 久久精品人妻系列无码专区忘忧草 | 熟妇在线一区| 婷婷色狠狠18| 日韩欧美国厂蜜臀亚洲| 中文无码一区二区三区在线观看| 久久这里只有精品免费播放| 国产黄页免费在线观看|